大数据征信如何为一个人建立数据肖像?

举个例子,我们怎么对机器的错误进行修正?回到变量的选取,变量的选取有很多方法,stepwise也好,lasso(逐步套索)也好,最终无外乎对每一个独特的变量进行选取。可是,如果几个变量柔和在一起形成一个新的变量,最终的结果是不是比一个单一变量更好?客观上这是很有可能的,但我们怎么才能做到?机器在早期的学习中是不能完成这一的工作的。

我举个例子,我们获得一个人过去十年搬家信息,十年搬了8次,我们如果单独对变量进行选取,可能只能选取其中一次的搬家历史,人工能发现这其中的问题,其次最好的办法是对这些搬家的变量求一阶导数,这十年他搬家是越来越快还是越来越慢,只有这样的变量对我们的模型才是有帮助的。

中美两地对于金融科技的热情以及各自面临的状况和创业者机会的差别是什么?

中国过去几十年都是以美国为标杆,以抄袭美国获得所谓“创新”。美国的Google,Facebook,ebay,亚马逊,在中国都能找到门徒,这是过去的状况。目前,中国的创新企业已经在改变这一的趋势。

一个最简单的感受,过去需要花3年时间才能抄的东西,现在3个月就能抄得比较像,有的特定领域美国要反过来学习中国。