专家谈计算神经科学与类脑人工智能的关系


 

  众所周知,科技创新对社会经济的进步起着巨大的作用。计算机的快速发展使信息技术产业成为现代经济的重心之一。然而,现有计算机仍难以完成许多对人类大脑来说轻而易举的复杂任务。所以,新一代信息技术产业很关注对于大脑功能和神经网络的研究,希望在理解其工作机制的基础上设计出新型的“人脑式电脑和机器人” 。今年3月,百度董事长兼首席执行官李彦宏在人大、政协两会上提出了“中国大脑”提案,呼吁一个新技术革命,并希望以此“带动整个民族创新能力的提升”。

  对基础研究的投入将带来脑科学、脑科技的突飞猛进

  中国要在信息技术产业上成为世界领军人,应该大力发展神经科学,带动下一个信息技术产业革命。在美国, 硅谷一些公司(高通(Qualcomm), IBM等)已开始向这一新兴的“脑科技”(NeuroTech)产业进军。同时,发展神经科学也具有战略意义。 美国国防部高级研究计划局(DARPA, Defense Advanced Research Projects Agency)、高级情报研究计划署(IARPA,Intelligence Advanced Research Projects Activity),以及海军等军事部门在神经科学领域已投入大量资金研发最新的神经技术。

  但是,在基础研究让我们真正了解大脑的生物学原理之前, 这些应用都缺乏坚实的基础、难于发展。就好像一个国家如果不重视固体物理研究,不可能在国际上成为芯片和电脑技术创新的领军人。所以,最重要的是对神经科学基础研究提供长期稳定的资金支持。即使美国情报高级研究计划署这样以应用为目标的机构,目前也主要资助“大脑皮层网络的机器智能”(Machine Intelligence from Cortical Networks, MICrONS)的基础研究【1】。该项目“旨在逆向大脑的运算法则,彻底改变机器学习”,并且“ 参与者将利用他们对大脑表征、转换和学习规则的深入研究和理解,来创造能力更强的类脑机器学习算法。” 这样的规划正是基于长远的战略考虑。

  学科交叉推动新兴的计算神经科学发展

  “类脑人工智能” 至今最成功的例子,是“深度学习”(deep learning) 【2】。“深度学习”植根于对大脑视觉系统的研究。视觉系统由很多“层”神经网络组成(因此叫“深度网络”)。神经信号经第一层处理后送至第二层,经第二层进一步处理后送至第三层,以此类推。层与层之间的网络连接是通过学习训练而形成的(故名“深度学习”)。深度学习系统在完成某些任务上(比如二维物体识别)已接近人的能力。然而目前这个理论还有相当大的局限。例如,深度网络模型通常只有“前馈” 连接(从第一层到第二层、第二层到第三层,等等),而人脑的神经系统有很多“反馈” 连接(从第三层回到第二层,等等),比如视觉注意力就来自于从高级“控制”脑区到初级视觉脑区的反馈信号。训练深度网络的学习算法目前也十分有限,需要千万张图来训练网络。人们对视觉注意力、抉择、学习等认知功能的大脑神经网络机制的研究方兴未艾。发展脑科学基础研究,将促进“深度学习” 等类脑智能技术的蓬勃发展。

  计算神经科学是脑科学中新兴的、跨领域的交叉学科【3,4】。它把实验神经科学和理论研究联系在一起,运用物理、数学以及工程学的概念和分析工具来研究大脑的功能。 各种新实验技术的快速发展,给我们带来了海量数据。但指数增长的实验数据,并不保证带来指数增长的知识。就像物理学一样,只有当理论的发展与实验同步时,我们才能找到大脑运作的基本规律。因此侧重于理论和模型的计算神经科学与实验神经科学的互动,将会对认识大脑工作机制起到十分关键的作用。大脑是一个异常复杂的动力学系统,具有多种在不同时空层次上的反馈机制,定量分析和计算模型上深入解析是至关重要的。这也就是为什么理论和计算神经科学成为了美国的“脑计划“中的七大优先研究方向之一: “严谨的理论,模型建造和统计分析,使我们对于复杂的,非线性的大脑功能有深入的了解,这是仅凭直觉无法做到的。为了推动理论和数据分析的发展,我们必须加强来自多学科的实验科学家和理论科学家的合作,如统计学,物理学,数学,工程以及信息科学等。”【5】。