那么,有了这样的一个思路,我们也可以放眼看一下,我们现在有了这样的成绩,今后在人工智能哪些会是热点?如果大家去过这些比较高端的学术会议,会发现有一个新的名词叫“Explainable AI”(可解释的人工智能),现在是非常地火爆。为什么会出现这样的词呢?因为可能过去一些爆点,像深度学习都是以一种黑箱的形式出现,我们并不知道它如何工作的,所以如果能够解释人工智能的引擎现在就变成一个非常急迫的任务,比如在关键的落地场景、决策、医疗、教育、包括政府的经济的决策,都需要这种“白箱”,这种透明,能够和人们解释后面的原因、因果。还有就是人工智能能不能够把门槛降低,像第四范式就在努力地做这样的一个先知平台,使得普通人也可以用人工智能的产品在上面搭建应用。还有一个就是非结构化数据,这个数据往往是以自然语言的形式出现,可能以其他的信号形式出现,这里面因为有大量的人工需要清理数据的需求,所以它的进步相对于其他人工智能领域相对较慢,但是它的应用面却更加地广泛。还有就是如何让人工智能的训练过程能够变得更加敏捷,就是如何能够Speedup machine learning的流程。最后是人工智能能不能给大家提供服务,就像我们打开自来水一样,我们能够自动地得到这种服务,这样使得社会分工更加清晰,使得不懂得AI的人能够得到AI的好处。能够做到这一点,就是AI能不能为所有的人服务,我们一定要研究这方面的技术,有一个技术是我和我的学生一直以来在研究的叫作迁移学习,迁移学习就是说如何能够把已经有的一个非常靠谱的模型和经验能够迁移到一个类似的领域,使得在新的领域不用花那么大的资源就可以获得一个很好的模型,迁移学习为什么有用呢?第一是它可以应对小数据,就是说在一个类似的领域,我们可以只依靠这个领域的小数据和前一个领域的大数据一起来建立一个新的模型,在小数据新的场景。第二个是它可以解决很多隐私方面的问题。假设我们要把数据迁移到一个个人的终端,这个终端如果有能力把一个通用的模型给适配到一个个性化的模型,它也可以很快地建立一个很靠谱的个性化模型,在手机上有新闻推荐等等之类的,都可以使用到这一点,在做的过程当中我们可以保证个人的隐私不外流。这个在企业服务上就非常地重要,如果一个企业建立了一个模型,为另外一个企业服务,另外那个企业不必要,不需要把数据传到前一个企业去,它在本地就可以进行模型的迁移,这种就可以使得AI as a service可以实现。
我们实验室做的工作,比如通过让机器理解人的知识,能够让机器进行舆情分析,在一个领域做好一个舆情分析的模型以后能够把它迁移到相关的领域,同时可以做跨领域的多媒体的,比方说文字到图像的知识迁移。还有对话系统,假如说我们有一个通用型的对话系统,我们可以迁移到个性化的每个人的手机上,可以进行对话,可以推荐,为个人进行服务。
总结:第四范式的口号“AI For Everyone”一样。这一点怎么得到呢?真正得到这一点需要我们大家不仅需要在学习上、在工业上要努力地把AI的门槛降低,如果真正能做到这一点,就像一个新的大数据和模型驱动的经济演进,这个就是我要讲的,谢谢大家。