从马文到AlphaGo AI走过了怎样的70年?

因为鉴于当时简单的计算机与编程工具,研究者们主要着眼于一些比较特定的问题。例如Herbert Gelernter建造了一个几何定理证明器,可以证明一些学生会感到棘手的几何定理;阿瑟·萨缪尔编写了西洋跳棋程序,水平能达到业余高手;James Slagle的SAINT程序能求解大学一年级的闭合式微积分问题;还有就是结合了多项技术的积木世界问题,它可以使用一只每次能拿起一块积木的机器手按照某种方式调整这些木块。

从马文·明斯基到AlphaGo,人工智能走过了怎样的70年?

(马文·明斯基与他的积木机器人)

虽然这些早期的人工智能项目看起来拥有着巨大的热情和期望,但是由于方法的局限性,人工智能领域的研究者越来越意识到他们所遇到的瓶颈和困难,再加上没有真正令人振奋人心的项目出来而导致资助的停止,人工智能陷入了一个低潮。

产生这些现实困难的原因主要有三点。

第一点是大部分早期程序对要完成的任务的主题一无所知。就拿机器翻译来说,给程序一个句子,会用的方法只是进行句法分割然后对分割后的成分进行词典翻译,那这样就很容易产生歧义。例如I went to the bank,bank既有银行也有河岸的意思,如果只是单纯的分割加单词翻译,这句话根本没法解释。

第二点是问题的难解性。上面我已经提到,早期的人工智能程序主要解决特定的问题,因为特定的问题对象少,复杂度低啊,但是一旦问题的维度上来了,程序立马就捉襟见肘了。

第三点就是程序本身的结构就有问题。例如明斯基在1969年证明了两输入的感知机连何时输入是相同的都判断不了。

从马文·明斯基到AlphaGo,人工智能走过了怎样的70年?

(感知机模型)

综上,由于种种困难,再加上资助的减少,人工智能步入了寒冬。这便是人工智能历史的上半段。

四、人工智能的重生

上个世纪80年代中期,当初于1969年由Bryson和Ho建立的反传学习算法被重新发明,然后统计学在人工智能领域的使用以及良好的效果也让科学界为之一振。于是在新的结构和新的方法下,人工智能又重获新生。

首先兴起的是语音识别领域,在这个方面的成就一个重要的原因是隐马尔可夫模型的方法开始主导这个领域。隐马尔可夫模型包含“隐含”和“马尔可夫链”两个概念,马尔可夫链是具有这样一种特性的链条,就是现在的状态只和前一个状态有关,而和再往前的状态没有关系。所以我们遇到这样一个链条的时候,我们可以随机选择一个状态作为初始状态,然后按照上述规则随机选择后续状态。“隐含”的意思则是在这个马尔可夫链上再加一个限制就是,任意时刻的状态我们是不可知的,但是这个状态会输出一个结果,这个结果只和这个状态相关,所以这个也称为独立输出假设。

通过这么一解释我们就能看出,隐马尔可夫模型是基于严格的数学理论基础,这允许语音研究者以其他领域中发展数十年的数学成果为依据。其次这个模型的这种随机性可以通过大量的真实语音进行训练,这就保证了性能的鲁棒性。

从马文·明斯基到AlphaGo,人工智能走过了怎样的70年?

(隐马尔可夫模型简图)

在马尔可夫链的基础上还诞生了一个以对不确定性知识进行有效表示和严格推理的形式化方法——贝叶斯网络。贝叶斯网络是一个加权的有向图,是马尔可夫链的拓展。马尔可夫链保证了网络中的每一个状态只跟与其直接相连的状态有关,而跟与它间接相连的状态没有关系,那么这就是贝叶斯网络。在这个网络中,每个节点的概率,都可以用贝叶斯公式来计算,贝叶斯网络因此得名。