与此同时,技术形成的时间甚至比逻辑还要久。然而,就像逻辑的应用长期被束缚于人类大脑之内一样,技术的发展也存在着同样的限制,这也包括计算机时代的上半世纪。会计软件跟细纱机实际上属于同一种类型:都是由人类刻意设计的,用于解决特定问题的东西。
但机器学习就不一样了。现在不是由人类设计算法来让计算机执行了,相反,是由计算机自己来设计算法了。这仍然是狭义的人工智能——计算机仍然受制于数据和人类给它制定的目标,但在我看来,机器学习跟之前的东西在意义上是不一样的。正如香农把物理与逻辑融合到一起造出了计算机一样,机器学习西把工具的开发与计算机本身融合到了一起,从而创造出了(狭义)的人工智能。
这并不是要炒作机器学习:其应用仍然高度受限,而且往往比人类设计的系统要糟糕,而且我们距离通用人工智能还非常非常的遥远。但是在我看来,我们已经坚实地踏上了狭义人工智能的领地:事实上,人类从一开始就在制造机器来替代自己的劳动;只是到了现在机器才开始创造自己,至少在一定程度上如此。(至少这是向同样人工智能迈进的值得鼓励的方向之一)
生命与意义
这个话题重要的原因在于,纯粹技术已经够难管理了:我们为技术进展付出的代价是所有那些不再需要的人类。从长期看工业革命是令人类受益的,但就短期而言却会让人类蒙受巨大灾难,其中间或发生的战争正因为技术的进展所产生的破坏性要大多。
那么机器学习,也就是(相对而言)能以快得出奇的速度创造可替代大量产生数据工作的算法(数据是创造这种算法的关键成分)这件事的潜在影响是什么呢?迄今为止自动化已经取代了蓝领工人,我们是否已经准备好迎接机器学习取代大量白领工人的日子到来了呢?
这就是Mnuchin的言论如此令人不安的原因,但这也是那么多技术人员对通用人工智能如此痴迷一样令人沮丧的原因。我知道那种担心,担心计算机远比任何人类都要聪明会干掉我们所有人;但更应该担心的是一个令大量人变得多余的世界的到来。如果人工智能已经消灭了生存的意义的话,又有多少人会关心人工智能会不会摧毁生命呢?
登陆|注册欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!