人工智能视域下机器学习的教育应用与创新探索

  类似的,Huang等使用归纳推理(基于相似的学习)、演绎推理(基于解释的学习)和类比推理(案例推理)等多策略机器学习构建了黑板多策略机器学习模型,学习和发现学生学习过程中不一致行为的属性。根据这些属性,智能教学系统可以采取适当的方法防止学生不一致行为的再次发生,例如,加强教学和实践。

  Wen和Rosé提出通过点击流分析确定学生的行为模式,以便为学生搜索信息和在线学习提供更有效的个性化支持。该研究分析了与课程成功高低有关的学生习惯性行为,以及情境信息对会话的影响。通过挖掘学生单个会话的习惯性行为,描述了MOOCs中的会话类型,采用局部6元模型对学习会话进行建模,以支持系统自动分配学习活动和活动序列。

  也有研究对学生的分心行为进行了分析,例如,等提出使用机器学习模型来支持智能教学系统自动检测学生的分心行为,数据来源于12名小学生行为记录的日志文件,方法采用最小二乘法和脊回归算法。该研究发现,结合时间、表现和鼠标移动等特征的模型对检测分心行为最有用,而考虑学生的个性化也能提高检测的有效性;同时发现,使用脊回归算法的模型比使用标准最小二乘法的表现更佳。

  3、预测学习表现

  预测学习表现,一般包括预测学生的最终分数或学术表现等,主要影响因素包括人口特征、分数(平时测验和最终成绩)、学生学档、多模能力、学生参与、活动的注册和参与以及情绪情感状态等。有些研究通过分析学生数据直接预测学习结果。例如,使用机器学习回归算法,对学生少量写作任务的分数和学生的关键人口特征数据进行分析,以预测学生的成绩。研究实验分为两个阶段,其中,训练阶段使用收集的数据来训练算法;测试阶段使用收集的10组数据来检测算法的精确度。

  San Pedro等将学生知识、学生情感和行为的细粒度模型,应用于3747名学生的数据分析来理解学生学习的发展和投入,以预测学生能否考上大学。该研究开发了一个逻辑回归模型,并且发现,学生投入和学生成功的特征组合作为预测指标,可以辨别出将考入大学的学生。

  类似的,Hachey等使用二元逻辑斯蒂回归算法,对962名学生的先前在线课程结果和GPA进行分析,来预测学生完成在线课程的成功率。其中,先前在线课程结果和GPA作为自变量,在线课程成功率作为因变量。在二元逻辑斯蒂回归模型中,GPA作为连续变量。该研究结果发现,先前在线学习体验作为预测指标比GPA能更好地预测成功率。

  也有研究对学习表现的影响因素进行了分析。Firmin等米用逻辑回归,基于三门MOOCs课程分析了学生及格与学习努力程度和个人基本特征的相关性。该研究采用二元逻辑斯蒂回归算法,发现学生的努力变量是学生及格唯一有效的预测指标,如,登录次数、学习时长和完成作业情况等,与学生基本特征无关,如,性别、年龄和家庭收入等。

  4、预警失学风险

  綴学率一直是教育管理领域的重要指标。机器学习方法能够对学生数据特征进行分析和归类,分析学生綴学原因,预测綴学行为。虽然教育管理部门存有大量的学生数据,但是由于缺乏适当的数据或受数据隐私性限制,预警失学的定量研究相对较少。

  例如,Thammasiri等和Lauía等基于大量的真实学生数据对学生的学术成功展开了研究。其中,Thammasiri等使用机器学习技术对长达七年、特征丰富的真实学生数据进行分析,来预测新生是否会在第二个学期注册继续学习。该研究比较了不同的数据平衡技术来提高少数类的预测准确度,其中包括过抽样算法、欠抽样算法和合成少数类过抽样算法,并连同逻辑回归、决策树、人工神经网络和支持向量机等四种流行的分类方法,构建预测模型来进行比较。研究结果发现,支持向量机结合合成少数类过抽样算法数据平衡技术是表现最佳的分类器,三个数据平衡技术都能提高少数类的预测准确度。在开发的模型中应用灵敏度分析,能够为学生流失的准确预测识别出最重要的变量。这些模型的应用能够预测高危学生,开发有效的干预方法来减少学生的失学率。

  类似的,Lauría等使用数据挖掘方法检测学生的学术危机来提高大学生的保留率。该研究的数据挖掘模型基于监督式学习技术,用来区分表现好和不好的学生。研究的方法框架包括收集数据、转化数据、分割数据、平衡训练数据、构建预测模型和使用测试数据评价模型。在构建预测模型阶段,该研究方法选用了三个分类器作比较:逻辑回归、支持向量机和C4.5决策树。数据来自四个不同数据源的3877条记录:学生履历数据和课程相关数据、课程管理事件数据和Sakai成绩单数据。研究结果发现,逻辑回归和支持向量机算法比C4.5决策树能够更精准地分类。