AI如互联网初生之时 尚不可信

【问】:我注意到你曾两次使用“思维”这个词,而不是“大脑”。这是故意的吗?如果是,你认为“思维”是从哪里来的?

萨克森纳:我认为现在AI有很多炒作,而且出现了很多误解。我很想这样说:“如今的AI等同于‘人工膨胀(artificially?inflated)’或‘惊人的创新(amazing?innovations)’。我认为在‘人工智能等同于人工膨胀’的领域里有五个误区。”最早的误区之一是,AI等同于人类思维的替代品。我将人类大脑与人类思维、人类意识区分开来。所以,在最好的情况下,我们想要做的就是利用AI的某些部分模拟人脑的功能,而不是说模仿人类思维或人类意识。

我们上次讨论过这个问题,我们甚至不知道意识是什么,除了靠医生宣布病人是死是活外,我们根本没有意识探测器。而对于人类思维有一种说法是,你可能需要量子计算机才能真正了解一个人的思维是如何工作的,它不是布尔型机器或冯诺依曼机器,而是一种不同类型的处理器。但我认为,人类的大脑可以被分解,可以通过AI增强,从而创造出非凡的结果。我们已经在放射学、华尔街、定量分析和其他领域看到了这一点。我认为更令人兴奋的是,可以将AI应用于这些领域。

【问】:你知道,这真的很有趣,因为有个持续了20年的研究项目OpenWorm。即专门研究线虫的大脑,它有302个神经元组成,研究人员希望对它进行建模。即使是在20年后,从事这个项目的研究人员也说,这或许是不可能实现的。所以,如果你不能模拟线虫的思维,那么有一件事是肯定的,在模拟线虫的大脑之前,你更无法对人类思维进行建模。

萨克森纳:完全正确。你知道我的看法,我更感兴趣的是“更富有”,而不是“更聪明”。我们需要变得更聪明,但同时我们也需要变得更加富有。我所谓的“更富有”并非单单指有钱,我的意思是:我们如何利用AI来改善我们的社会、我们的企业以及我们的生活方式。这就是我为何认为应以“更注重结果”而不是“科学研究”的方式来解决这个问题的原因,我认为前者是一种更实用的AI应用方式。

【问】:所以,你提到了五个误解,它就是其中之一。其他的四个误解都是什么?

萨克森纳:第一个误解是,AI等同于取代人类思维。第二个误解是,将AI与自然语言处理等同起来,但实际上这与事实相去甚远。自然语言处理只是AI中的一种技术。这就像是在说:“我有能力理解和阅读一本书,而这就是我的大脑的全部能力。”这是第二个误解。

第三个误解是,AI和大数据、分析数据没什么分别,大数据和分析工具是用来捕捉更多AI输入的工具。但认为大数据和AI没有分别,只是因为我能感知到更多,可以变得更聪明。所有大数据都会给你更多的信息,让你有更多的感觉。它不会让你变得更聪明。这是第三个误解。

第四个误解是,与垂直应用相比,水平部署的AI更好用。我相信真正的AI以及在企业中取得成功的AI,必然是垂直领域的AI。因为说“我有个AI”是一回事儿,而“我有一个懂得保险的AI”则是另一回事儿,还有能理解糖尿病的AI,能理解“超级碗”广告的AI等。每个AI分支都需要对数据、模型、算法和经验进行特定领域的优化。这是第四个误解。

第五个误解是,AI完全是关于技术的。而在最好的情况下,AI只有一半与技术有关。这个等式的另一半与技能有关,与新流程、方法和管理有关,比如如何在企业中负责任地管理AI等。就像互联网出现的时候,你没有办法和流程来创建网页,建立网站,管理网站不被入侵,以及管理网站的更新等。类似地,有个完整的AI生命周期管理,这也是CognitiveScale公司关注的问题:如何以负责的、大规模的方式创建、部署和管理AI?

传统IT系统不具备学习能力,它们主要是基于规则建立的系统,以规则为中心的系统不会学习,而以AI为基础系统是基于模式的,它们可以从模式中学习。因此,与不具备学习能力的传统IT系统不同,AI系统有自学和几何级数提升自我的能力。如果你无法获得对这些AI系统的可见性和控制能力,那么你可能会面临CognitiveScale公司所谓的“流氓AI”的巨大问题,它是不负责任的AI。你知道恐怖电影《鬼娃孽种》(Seed of Chucky)中的场景吧,就像许多鬼娃在你的企业里跑来跑去,将那里搞得一团糟。我们需要的是全面的端对端视图,从设计、部署到生产,以及在规模上管理AI。这需要的不仅仅是技术,还需要技能、方法以及过程。