AI如互联网初生之时 尚不可信

AI必须作为一项商业战略来完成

【问】:在我们更早的聊天中,你提到有些人在扩展他们的AI项目时遇到了困难,他们在自己的企业里开始,让他们的企业有了准备。我们来谈谈这个问题。为什么会这样,那么解决方法是什么呢?

萨克森纳:是的。在过去五年中,我与超过600名客户进行了交流,从IT级别到董事级别,再到首席执行官级别。有三件大事正在发生,他们正在努力获取AI的价值。第一,AI被认为是数据科学家和分析人员才可以做的事情。然而AI实在太重要了,不能只留给数据科学家去做。AI必须作为一项商业战略来完成。AI必须通过自顶向下的方式来驱动业务成果,而不是自下而上地寻找数据模式。这是第一部分。我看到很多正在进行的科学项目。其中一位客户将其称为“飞镖vs泡沫”。他说:“有很多项目正在进行中,但我怎么知道泡沫在哪里,这对我所拥有的数十亿美元的业务真的有帮助吗?”有很多我称之为“自下而上的工程实验”正在进行中,它们可能不会有太大帮助。

第二,数据科学家和应用开发人员正在努力将这些项目投入生产,因为他们无法为你在企业中需要的AI提供基本能力,比如解释能力。我相信,目前99.9%的AI公司在未来3年内无法实现这一目标,因为它们缺乏一些基本的能力,即解释能力。在互联网上通过深度学习网络找到喵星人的照片是一回事,向首席风险官解释为什么某项指控被拒绝、病人为何死亡则是另一回事,而现在他们又面临着一场价值数百万美元的诉讼。AI必须是负责任的、值得信赖的、能够解释的,并能够说明为什么当时做出了这样的决定。由于缺乏这种能力,而且有五种我们称之为“企业级AI”的能力,大多数项目都无法进入生产阶段,因为它们无法满足安全性和性能方面的要求。

最后,这些技能依然非常稀少。有人曾告诉我,在这个世界上只有七千个人拥有能够理解和运行AI模型和网络的技能,比如深度学习和其他网络。想象一下,7000人。我知道有一家银行,它有22000名开发者,这仅仅是一家银行。如今AI投入实践中使用的方式依然存在着巨大分歧,与此同时,AI技能的发展也面临着巨大的挑战。

这是CognitiveScale公司正在做的另一件事,我们创造了这个平台来帮助AI民主化。如何让应用开发者、数据科学家和机器学习人员协同工作,并在90天内部署AI?我们有一种名为“10-10-10”的方法,即在10小时内,我们选择一个用例;在10天内,我们使用它们的数据建立参考应用程序;最后在10周内,我们将它们投入生产实践中。我们通过帮助这些团队合作开发一个名为“Cortex”的新平台,让你可以安全地将AI大规模地投入生产。

【问】:在这一点上,欧洲人正在努力,以弄明白AI是否为你做出了决定,你有权利知道为什么它会拒绝为你贷款。所以,你是说这是现在还没有发生的事情,但这是有可能发生的。

萨克森纳:实际上,目前已经有很多正在进行的类似努力。DARPA已经围绕“XAI”(可解释AI)这个概念提出了一些倡议。我知道其他公司也在探索这个问题,但这仍然是一项水平非常低的技术工作。在商业流程层面,在行业层面上,“XAI”不会出现,因为AI的解释性要求因过程而有所不同,行业之间也存在差异。对于喉癌专家来说,关于AI为何推荐当前疗法的解释性要求,与财富管理领域的投资咨询经理的解释性要求不同,后者可能会说:“这是我和AI系统向你推荐的投资组合。”因此,解释性要求存在于两个层面。它作为一种技术存在于水平层面上,而且它也存在于行业优化层面上,这就是为什么我认为AI必须进行垂直化和行业优化才能真正实现起飞的理由。

【问】:你认为这是询问AI系统的有效请求。

萨克森纳:我认为这是必要条件。

【问】:但如果你问谷歌员工:“我在搜索中排名第三,另一人排在第四位。为什么我第三他第四?他们会说:‘我不知道。’因为有六千种不同的事情正在发生。”